Cessna Centurion Wing Structural Assessment

Beth Gamble

Agenda

- Background
- Wing Spar Cap Cracking
- Initial Response
- Fleet Data Analysis
- Structural Analysis
- Residual Strength Testing
- Inspection Plan
- Conclusion

Background

- Model 210 wing (210G-210R) is an all metal wing
 - Full Cantilever
 - Single Main Spar
 - 210G-210N spar caps are 2014-T6511 aluminum
 - 210R spar caps are 7075-T73511 aluminum
 - Two "Fuel Spars"
 - Front fuel spar serves as auxiliary spar and the forward attachment to wing
 - Spars are .032 2024-T3 sheet
 - Formed ribs and stringers
- 7,322 210G-210R aircraft manufactured
- Used for a variety of missions
- Certified CAR 3

Wing Leading Edge Assembly

Wing Spar Cap Cracking

- April 2012 received five reports of wing spar cracking from Australia
- Aircraft information
 - Operations
 - Three airplanes used for geophysical survey
 - Two flown in typical operations
 - Location
 - Two airplanes registered in Queensland
 - One airplane each registered in New South Wales, Northern Territory and Western Australia
 - Modifications
 - One airplane may have had wing tip tanks

Wing Spar Cap Cracking

Number	Date Found	Model	Year Built	Certification Agency	Flight Hours	Known Operations	Crack Details
1	Oct-2007	210L	1976	Transport Canada	10,608	Fire fighting reconnaissance missions ~10 years	Cap 50% Severed
2	2007	210L	1973	Australia CASA	12,000	Geophysical Survey	Ligament Cracked
3	Nov-2010	210M	1978	Australia CASA	9,000	Charter/Freight	Ligament Cracked
4	Apr-2012	210R	1985	Australia CASA	15,000	Geophysical Survey	Cap 90% Severed
5	Apr-2012	210M	1977	Australia CASA	13,963	Geophysical Survey	Ligament Cracked
6 Airwo	Apr-2012	210L	1975 2012 —	Australia CASA	5,750	Normal Operations	Ligament Cracked
7	Jun-2012	210L	1976	Namibia CAA	7,057	Charter	Ligament Cracked
8	Oct-2012	210N	1980	Australia CASA	17,280	Charter	Ligament Cracked

Wing Spar Cap Cracking – 1976 210L

210L with 10,608 hours

Wing Spar Cap Cracking – 1975 210L

View of Spar Cap Upper Surface

View of Spar Cap Lower Surface

210L with 5,750 hours

Wing Spar Cap Cracking – 1985 210R

210R with 15,000 hours

Initial Response

- Cessna Service Letter SEL-57-01
 - Visual inspection of spar cap at fitting
 - Inspection times
 - Airplanes over 10000 hours
 - Perform inspection within 5 hours, repeat every 500 hours
 - Airplanes over 5000 hours
 - Perform inspection within 25 hours, repeat every 500 hours
 - Reporting form included in service letter
 - Repair is replace cap, spar assembly or wing
- FAA issued airworthiness directive to mandate inspection and report findings (one-time only)

- 632 airplanes were inspected per AD2012-10-04
 - Two additional airplanes were found to have ligament cracks
- Weibull analysis completed using inspection reports
 - Assumed 4,882 suspensions based on 7,322 airplanes manufactured minus 2,440 included in NTSB database
 - Analysis conducted with and without suspensions
 - Analyzed non-reporting fleet assuming 100 and 125 annual flight hours

AD2012-10-04 Inspection Reports

Flight Hours

Model 210 Wing CDF

- Hazard function h(t) used to determine instantaneous failure rate
 - Interpretation: Consider a single aircraft that found no failed spar at time t. The chances of having a cracked spar in a small interval [t,t+dt] are then given by $H(t) \cong h(t) dt$ Hazard Function - Instantaneous Failure Rate

- Goal of analysis is to determine if inspection program is feasible
 - Determine crack propagation rate
 - Determine residual strength capability
- Conducted flight strain survey on a Model 210M
- Developed detailed finite element model (FEM) of wing structure

Wing FEM - Skins Removed for Clarity

Flight Strain Test Airplane

Model 210 Wing Spar Finite Element Model

- Analysis Opportunities
 - Develop spectrum representative of the fleet
 - Ability of spar cap to arrest crack starting in ligament
 - Two spar materials:
 - 2014-T6511 (Models 210G-210N)
 - 7075-T73511 (210R)

Model 210 Spar Cap Cross-Section

- Spectrum development
 - FAA Advisory Circular AC23-13A exceedance curves used to develop flight spectrum
 - Assumed two flight profiles based on Cessna Service Letter SEL-57-01 reports
 - Typical profile
 - Severe profile
- Fatigue and crack growth evaluations
 - Typical spectrum calculated fatigue life correlates well with fleet data
 - Majority of crack growth life remains in cap after ligament breaks
- Residual strength analysis
 - ABAQUS model developed to evaluate residual strength capability of a cracked spar
 - ABAQUS model verified by residual strength testing

Residual Strength Testing

- Testing conducted to determine if a 2014-T6511 spar cap has sufficient residual strength to hold limit load with a crack present
 - Model 210 wing spar assembly was obtained from a salvage yard
 - Test #1
 - Spar assembly (upper and lower caps plus web) was cyclic tested
 - Test #2
 - Section of spar cap with natural crack was placed into MTS machine and loaded to ultimate load

Residual Strength Testing – Test #1

Model 210 Wing Spar Assembly

Outboard

 \rightarrow

Residual Strength Testing – Test #2

Test Setup

Post-Test Crack Extension

Inspection Plan

- Revised Cessna service letter SEL-57-01 to include new inspections
- Added inspection to
 - Model 210 Service Manual (Supplemental Inspection 57-11-03)
 - Airworthiness Limitations Section
- Inspection plan is for unmodified airplanes
- Model 177 Cardinal has similar inspection plan

Visual Inspection									
	Typica	I Usage	Severe Usage						
Material	Initial (hrs)	Repeat (hrs)	Initial (hrs)	Repeat (hrs)					
2014-T6511	5,000	100	3,000	100					
7075-T73511	4,000	100	2,500	100					

Eddy Current Inspection ¹									
	Typica	l Usage	Severe Usage						
Material	Initial (hrs)	Repeat (hrs)	Initial (hrs)	Repeat (hrs)					
2014-T6511	8,000	2,000	3,500	500					
7075-T73511	5,500	2,000	2,800	500					

 1 Eddy current inspect around the fasteners and along the radius from WS 26 to WS 40

Conclusion

- Model 210 fleet can be kept airworthy up to the 30,000 hour retirement life with added wing inspection
- Safety is a partnership between owners (maintainers), manufacturers and the FAA/CASA
- Report anomalies to the manufacturer customer service
 - Cracking of major structural elements needs to be reported immediately

